Publications

Refine Results

(Filters Applied) Clear All

The ASR-9 Processor Augmentation Card (9-PAC)

Published in:
MIT Lincoln Laboratory Report ATC-232

Summary

Since 1990, the Airport Surveillance Radar-9 (ASR-9) has been commissioned and installed at more than 60 of the largest airports in the United States, and future installations are planned at more than 60 additional airports. After the first several systems were put into daily operation, air traffic controllers began to lodge complaints about the radar's performance. Problems included the detection of "phantom" aircraft caused by the reflection of beacon interrogation signals off buildings and other aircraft, the radar's losing track of targets during parallel approaches and departures, the inability to track highly maneuverable military aircraft through high-G turns, radar clutter caused by highways and weather, and system overloading as a result of signal returns from flocks of migrating birds. An initial investigation of the sources of these problems focused on the radar's post-processor. Nearly all of the problems could be addressed by additions to the post-processor software, but the post-processor was already running near capacity and there was no means for expansion. Thus, a new processor - the ASR-9 Processor Augmentation Card (9-PAC) - was designed to augment the existing system to allow for a significant increase in processing power. New algorithms were developed to run in 9-PAC to address the problems cited by the controllers.
READ LESS

Summary

Since 1990, the Airport Surveillance Radar-9 (ASR-9) has been commissioned and installed at more than 60 of the largest airports in the United States, and future installations are planned at more than 60 additional airports. After the first several systems were put into daily operation, air traffic controllers began to...

READ MORE

Military and government applications of human-machine communication by voice

Published in:
Proc. Natl. Acad. Sci., Vol. 92, October 1995, pp. 10011-10016.

Summary

This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs.
READ LESS

Summary

This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will...

READ MORE

Sine-wave amplitude coding using a mixed LSF/PARCOR representation

Published in:
Proc. 1995 IEEE Workshop on Speech Coding for Telecommunications, 20-22 Spetember 1995, pp. 77-8.

Summary

An all-pole model of the speech spectral envelope is used to code the sine-wave amplitudes in the Sinusoidal Transform Coder. While line spectral frequencies (LSFs) are currently used to represent this all-pole model, it is shown that a mixture of line spectral frequencies and partial correlation (PARCOR) coefficients can be used to reduce complexity without a loss in quantization efficiency. Objective and subjective measures demonstrate that speech quality is maintained. In addition, the use of split vector quantization is shown to substantially reduce the number of bits needed to code the all-pole model.
READ LESS

Summary

An all-pole model of the speech spectral envelope is used to code the sine-wave amplitudes in the Sinusoidal Transform Coder. While line spectral frequencies (LSFs) are currently used to represent this all-pole model, it is shown that a mixture of line spectral frequencies and partial correlation (PARCOR) coefficients can be...

READ MORE

Automated storm tracking for terminal air traffic control

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 427-448.

Summary

Good estimates of storm motion are essential to improved air traffic control operations during times of inclement weather. Automating such a service is a challenge, however, because meteorological phenomena exist as complex distributed systems that exhibit motion across a wide spectrum of scales. Even when viewed from a fixed perspective, these evolving dynamic systems can test the extent of our definition of motion, as well as any attempt at automated tracking of this motion. Image-based motion detection and processing appear to provide the best route toward robust performance of an automated tracking system.
READ LESS

Summary

Good estimates of storm motion are essential to improved air traffic control operations during times of inclement weather. Automating such a service is a challenge, however, because meteorological phenomena exist as complex distributed systems that exhibit motion across a wide spectrum of scales. Even when viewed from a fixed perspective...

READ MORE

The Integrated Terminal Weather System terminal winds product

Author:
Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 475-502.

Summary

The wind in the airspace around an airport impacts both airport safety and operational efficiency. Knowledge of the wind helps controllers and automation systems merge streams of traffic; it is also important for the prediction of storm growth and decay, burn-off of fog and lifting of low ceilings, and wake vortex hazards. This knowledge is provided by the Integrated Terminal Weather System (ITWS) gridded wind product, or Terminal Winds. The Terminal Winds product combines data from a national numerical weather-prediction model, called the Rapid Update Cycle, with observations from ground stations, aircraft reports, and Doppler weather radars to provide estimates of the horizontal wind field in the terminal area. The Terminal Winds analysis differs from previous real-time winds-analysis systems in that it is dominated by Doppler weather-radar data. Terminal Winds uses an analysis called cascade of scales and a new winds-analysis technique based on least squares to take full advantage of the information contained in the diverse data set available in an ITWS. The weather radars provide sufficiently fine-scale winds information to support a 2-km horizontal-resolution analysis and a five-minute update rate. A prototype of the Terminal Winds analysis system was tested at Orlando International Airport in 1992, 1993, and 1995, and at Memphis International Airport in 1994. The field operations featured the first real-time winds analysis combining data from the Federal Aviation Administration TDWR radar and the National Weather Service NEXRAD radar. The evaluation plan is designed to capture both the overall system performance and the performance during convective weather, when the fine-scale analysis is expected to show its greatest benefit.
READ LESS

Summary

The wind in the airspace around an airport impacts both airport safety and operational efficiency. Knowledge of the wind helps controllers and automation systems merge streams of traffic; it is also important for the prediction of storm growth and decay, burn-off of fog and lifting of low ceilings, and wake...

READ MORE

TCAS: maneuvering aircraft in the horizontal plane

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 295-312.

Summary

The Traffic Alert and Collision Avoidance System (TCAS II) is now operating in all commercial airline aircraft to reduce the risk of midair collisions. TCAS II determines the relative positions of nearby aircraft, called intruders, by interrogating their transponders and receiving their replies. An intruder deemed a potential threat will trigger a resolution advisory (RA) that consists of an audible alert and directive that instructs the pilot to execute a vertical avoidance maneuver. Lincoln Laboratory has investigated the possibility of increasing the capability of TCAS II by incorporating the horizontal maneuvering of aircraft. Horizontal RAs can be computed if the intruder horizontal miss distances at closest approach are known. Horizontal miss distances can be estimated with range and bearing measurements of intruders. With this method, however, large errors in estimating the bearing rates will result in large errors in calculating the horizontal miss distances. An improved method of determining the horizontal miss distances may be to use the Mode S data link to obtain state data (position, velocity, and acceleration) from intruder aircraft.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS II) is now operating in all commercial airline aircraft to reduce the risk of midair collisions. TCAS II determines the relative positions of nearby aircraft, called intruders, by interrogating their transponders and receiving their replies. An intruder deemed a potential threat will...

READ MORE

GPS antenna multipath rejection performance

Published in:
MIT Lincoln Laboratory Report ATC-238
Topic:

Summary

A GPS antenna multipath rejection performance evaluation was conducted at Lincoln Laboratory. Ground reference station antennas and aviation patches were tested for their ability to reject a muitipath signal. Different types of ground plane structures were used such as choke rings, ground planes, and mock sections of fuselage. Frequencies transmitted were L1 (1575 MHz), L2 (1227 MHz), and the median GLONASS frequency (1609 MHz ). Receive amplitude and phase were measured on each antenna. Subsequently, these data were converted to absoIute gain for a right-hand and Ieft- hand circularly polarized signal as a function of satellitte elevation angle. (Not Complete)
READ LESS

Summary

A GPS antenna multipath rejection performance evaluation was conducted at Lincoln Laboratory. Ground reference station antennas and aviation patches were tested for their ability to reject a muitipath signal. Different types of ground plane structures were used such as choke rings, ground planes, and mock sections of fuselage. Frequencies transmitted...

READ MORE

Development and performance of a CW coherent laser radar for detecting wake vortices

Published in:
Optical Society of America, Coherent Laser Radar Topical Mtg., 1995 Technical Digest Series, Vol. 19, 23-27 July 1995, pp. 186-189

Summary

A CW-coherent laser radar using a 20-Watt CO2 laser has been constructed and deployed for the measurement of wake-vortext turbulence. This is part of a larger effort to understand the motion and decay of wake vortices as a function of the local atmospheric conditions. The construction and operation of the lidar and the initial fielding at Memphis International Airport are described.
READ LESS

Summary

A CW-coherent laser radar using a 20-Watt CO2 laser has been constructed and deployed for the measurement of wake-vortext turbulence. This is part of a larger effort to understand the motion and decay of wake vortices as a function of the local atmospheric conditions. The construction and operation of the...

READ MORE

A comparison of signal processing front ends for automatic word recognition

Published in:
IEEE Trans. Speech Audio Process., Vol. 3, No. 4, July 1995, pp. 286-293.

Summary

This paper compares the word error rate of a speech recognizer using several signal processing front ends based on auditory properties. Front ends were compared with a control mel filter banks (MFB) based cepstral front end in clean speech and with speech degraded by noise and spectral variability, using the TI-105 isolated word database. MFB recognition error rates ranged from 0.5 to 3.1%,, and the reduction in error rates provided by auditory models was less than 0.5 percentage points. Some earlier studies that demonstrated considerably more improvement with auditory models used linear predictive coding (LPC) based control front ends. This paper shows that MFB cepstra significantly outperform LPC cepstra under noisy conditions. Techniques using an optimal linear combination of features for data reduction were also evaluated.
READ LESS

Summary

This paper compares the word error rate of a speech recognizer using several signal processing front ends based on auditory properties. Front ends were compared with a control mel filter banks (MFB) based cepstral front end in clean speech and with speech degraded by noise and spectral variability, using the...

READ MORE

Phased array calibrations using measured element patterns

Published in:
1995 IEEE Int. Symp. Digest, Antennas and Propagation, Vol. 2, 18-23 June 1995, pp. 918-921.

Summary

A technique to compensate for differences in phased array element patterns is presented. Each measured element pattern is approximated by a virtual array whose excitation function is determined by the Woodward-Lawson synthesis technique. By extending the virtual array beyond the physical array dimensions, mutual coupling and edge diffraction effects can be separated. An example is given where calibration by coupling matrix inversion resulted in significantly reduced array pattern sidelobes.
READ LESS

Summary

A technique to compensate for differences in phased array element patterns is presented. Each measured element pattern is approximated by a virtual array whose excitation function is determined by the Woodward-Lawson synthesis technique. By extending the virtual array beyond the physical array dimensions, mutual coupling and edge diffraction effects can...

READ MORE