Publications
Beyond expertise and roles: a framework to characterize the stakeholders of interpretable machine learning and their needs
Summary
Summary
To ensure accountability and mitigate harm, it is critical that diverse stakeholders can interrogate black-box automated systems and find information that is understandable, relevant, and useful to them. In this paper, we eschew prior expertise- and role-based categorizations of interpretability stakeholders in favor of a more granular framework that decouples...
Seasonal Inhomogeneous Nonconsecutive Arrival Process Search and Evaluation
Summary
Summary
Time series often exhibit seasonal patterns, and identification of these patterns is essential to understanding thedata and predicting future behavior. Most methods train onlarge datasets and can fail to predict far past the training data. This limitation becomes more pronounced when data is sparse. This paper presents a method to...
Automatic detection of influential actors in disinformation networks
Summary
Summary
The weaponization of digital communications and social media to conduct disinformation campaigns at immense scale, speed, and reach presents new challenges to identify and counter hostile influence operations (IO). This paper presents an end-to-end framework to automate detection of disinformation narratives, networks, and influential actors. The framework integrates natural language...
The Speech Enhancement via Attention Masking Network (SEAMNET): an end-to-end system for joint suppression of noise and reverberation [early access]
Summary
Summary
This paper proposes the Speech Enhancement via Attention Masking Network (SEAMNET), a neural network-based end-to-end single-channel speech enhancement system designed for joint suppression of noise and reverberation. It formalizes an end-to-end network architecture, referred to as b-Net, which accomplishes noise suppression through attention masking in a learned embedding space. A...
Information Aware max-norm Dirichlet networks for predictive uncertainty estimation
Summary
Summary
Precise estimation of uncertainty in predictions for AI systems is a critical factor in ensuring trust and safety. Deep neural networks trained with a conventional method are prone to over-confident predictions. In contrast to Bayesian neural networks that learn approximate distributions on weights to infer prediction confidence, we propose a...
Ablation analysis to select wearable sensors for classifying standing, walking, and running
Summary
Summary
The field of human activity recognition (HAR) often utilizes wearable sensors and machine learning techniques in order to identify the actions of the subject. This paper considers the activity recognition of walking and running while using a support vector machine (SVM) that was trained on principal components derived from wearable...
NASA Airspace Integration Detect and Avoid Phase 2: Safety Risk Management Simulation Plan
Summary
Summary
RTCA has been developing Minimum Operational Performance Standards (MOPS) for Detect and Avoid (DAA) and Command and Control (C2) systems as part of Special Committee – 228 (SC-228). The Phase 1 MOPS were published in 2017 and a Phase 2 effort to revise and extend the Phase 1 MOPS is...
Operation of an optical atomic clock with a Brillouin laser subsystem
Summary
Summary
Microwave atomic clocks have traditionally served as the 'gold standard' for precision measurements of time and frequency. However, over the past decade, optical atomic clocks have surpassed the precision of their microwave counterparts by two orders of magnitude or more. Extant optical clocks occupy volumes of more than one cubic...
Adaptive stress testing: finding likely failure events with reinforcement learning
Summary
Summary
Finding the most likely path to a set of failure states is important to the analysis of safety critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. In many applications such as autonomous driving, failures cannot be completely eliminated due...
Ultrasound diagnosis of COVID-19: robustness and explainability
Summary
Summary
Diagnosis of COVID-19 at point of care is vital to the containment of the global pandemic. Point of care ultrasound (POCUS) provides rapid imagery of lungs to detect COVID-19 in patients in a repeatable and cost effective way. Previous work has used public datasets of POCUS videos to train an...