Publications
Integrative sensor networks, informatics, and modeling for precision and preventative medicine
Summary
Summary
The topics of integrative sensor networks, informatics and modeling bring together the tightly coupled and rapidly developing fields of biomedical and health informatics and body sensor networks. Biomedical and health informatics encompasses methods to extract and communicate information from data in order to impact health, healthcare, life sciences and biomedicine...
Deep implicit coordination graphs for multi-agent reinforcement learning [e-print]
Summary
Summary
Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise...
Control systems need software security too: cyber-physical systems and safety-critical application domains must adopt widespread effective software defenses
Summary
Summary
Low-level embedded control systems are increasingly being targeted by adversaries, and there is a strong need for stronger software defenses for such systems. The cyber-physical nature of such systems impose real-time performance constraints not seen in enterprise computing systems, and such constraints fundamentally alter how software defenses should be designed...
COVID-19: famotidine, histamine, mast cells, and mechanisms [eprint]
Summary
Summary
SARS-CoV-2 infection is required for COVID-19, but many signs and symptoms of COVID-19 differ from common acute viral diseases. Currently, there are no pre- or post-exposure prophylactic COVID-19 medical countermeasures. Clinical data suggest that famotidine may mitigate COVID-19 disease, but both mechanism of action and rationale for dose selection remain...
75,000,000,000 streaming inserts/second using hierarchical hypersparse GraphBLAS matrices
Summary
Summary
The SuiteSparse GraphBLAS C-library implements high performance hypersparse matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave). GraphBLAS provides a lightweight in-memory database implementation of hypersparse matrices that are ideal for analyzing many types of network data, while providing rigorous mathematical guarantees, such as linearity. Streaming updates...
The 2017 Buffalo Area Icing and Radar Study (BAIRS II)
Summary
Summary
The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...
Kawasaki disease, multisystem inflammatory syndrome in children: antibody-induced mast cell activation hypothesis
Summary
Summary
Multisystem Inflammatory Syndrome in Children (MIS-C) is appearing in infants, children, and young adults in association with COVID-19 (coronavirus disease 2019) infections of SARS-CoV-2. Kawasaki Disease (KD) is one of the most common vasculitides of childhood. KD presents with similar symptoms to MIS-C especially in severe forms such as Kawasaki...
Bayesian estimation of PLDA with noisy training labels, with applications to speaker verification
Summary
Summary
This paper proposes a method for Bayesian estimation of probabilistic linear discriminant analysis (PLDA) when training labels are noisy. Label errors can be expected during e.g. large or distributed data collections, or for crowd-sourced data labeling. By interpreting true labels as latent random variables, the observed labels are modeled as...
One giant leap for computer security
Summary
Summary
Today's computer systems trace their roots to an era of trusted users and highly constrained hardware; thus, their designs fundamentally emphasize performance and discount security. This article presents a vision for how small steps using existing technologies can be combined into one giant leap for computer security.
Discriminative PLDA for speaker verification with X-vectors
Summary
Summary
This paper proposes a novel approach to discrimina-tive training of probabilistic linear discriminant analysis (PLDA) for speaker verification with x-vectors. Model over-fitting is a well-known issue with discriminative PLDA (D-PLDA) forspeaker verification. As opposed to prior approaches which address this by limiting the number of trainable parameters, the proposed method...