Publications

Refine Results

(Filters Applied) Clear All

Towards reduced false-alarms using cohorts

Published in:
Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP, 22-27 May 2011, pp. 4512-4515.

Summary

The focus of the 2010 NIST Speaker Recognition Evaluation (SRE) was the low false alarm regime of the detection error trade-off (DET) curve. This paper presents several approaches that specifically target this issue. It begins by highlighting the main problem with operating in the low-false alarm regime. Two sets of methods to tackle this issue are presented that require a large and diverse impostor set: the first set penalizes trials whose enrollment and test utterances are not nearest neighbors of each other while the second takes an adaptive score normalization approach similar to TopNorm and ATNorm.
READ LESS

Summary

The focus of the 2010 NIST Speaker Recognition Evaluation (SRE) was the low false alarm regime of the detection error trade-off (DET) curve. This paper presents several approaches that specifically target this issue. It begins by highlighting the main problem with operating in the low-false alarm regime. Two sets of...

READ MORE

Identification and compensation of Wiener-Hammerstein systems with feedback

Published in:
ICASSP 2011, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 22-27 May 2011, pp. 4056-4059.

Summary

Efficient operation of RF power amplifiers requires compensation strategies to mitigate nonlinear behavior. As bandwidth increases, memory effects become more pronounced, and Volterra series based compensation becomes onerous due to the exponential growth in the number of necessary coefficients. Behavioral models such as Wiener-Hammerstein systems with a parallel feedforward or feedback filter are more tractable but more difficult to identify. In this paper, we extend a Wiener-Hammerstein identification method to such systems showing that identification is possible (up to inherent model ambiguities) from single- and two-tone measurements. We also calculate the Cramer-Rao bound for the system parameters and compare to our identification method in simulation. Finally, we demonstrate equalization performance using measured data from a wideband GaN power amplifier.
READ LESS

Summary

Efficient operation of RF power amplifiers requires compensation strategies to mitigate nonlinear behavior. As bandwidth increases, memory effects become more pronounced, and Volterra series based compensation becomes onerous due to the exponential growth in the number of necessary coefficients. Behavioral models such as Wiener-Hammerstein systems with a parallel feedforward or...

READ MORE

FDSOI process technology for subthreshold-operation ultra-low power electronics

Published in:
ECS Meeting, 1 May 2011 (in: Adv. Semiconductor-on-Insulator Technol. Rel. Phys., Vol. 35, No. 5, 2011, pp. 179-188).
Topic:

Summary

Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation at 0.3 V may achieve a 97% reduction in switching energy compared to conventional transistors. The process technology described in this article takes advantage of the capacitance and performance benefits of thin-body silicon-on-insulator devices, combined with a workfunction engineered mid-gap metal gate.
READ LESS

Summary

Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation...

READ MORE

Thermally tuned dual 20-channel ring resonator filter bank in SOI (silicon-on-insulator)

Published in:
CLEO 2011, Conf. on Lasers and Electro-Optics, 1 May 2011.

Summary

Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.
READ LESS

Summary

Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.

READ MORE

Achieving cyber survivability in a contested environment using a cyber moving target

Published in:
High Frontier, Vol. 7, No. 3, May 2011, pp. 9-13.

Summary

We describe two components for achieving cyber survivability in a contested environment: an architectural component that provides heterogeneous computing platforms and an assessment technology that complements the architectural component by analyzing the threat space and triggering reorientation based on the evolving threat level. Together, these technologies provide a cyber moving target that dynamically changes the properties of the system to disadvantage the adversary and provide resiliency and survivability.
READ LESS

Summary

We describe two components for achieving cyber survivability in a contested environment: an architectural component that provides heterogeneous computing platforms and an assessment technology that complements the architectural component by analyzing the threat space and triggering reorientation based on the evolving threat level. Together, these technologies provide a cyber moving...

READ MORE

Distributed multi-modal sensor system for searching a foliage-covered region

Summary

We designed and constructed a system that includes aircraft, ground vehicles, and throwable sensors to search a semiforested region that was partially covered by foliage. The system contained 4 radio-controlled (RC) trucks, 2 aircraft, and 30 SensorMotes (throwable sensors). We also investigated communications links, search strategies, and system architecture. Our system is designed to be low-cost, contain a variety of sensors, and distributed so that the system is robust even if individual components are lost.
READ LESS

Summary

We designed and constructed a system that includes aircraft, ground vehicles, and throwable sensors to search a semiforested region that was partially covered by foliage. The system contained 4 radio-controlled (RC) trucks, 2 aircraft, and 30 SensorMotes (throwable sensors). We also investigated communications links, search strategies, and system architecture. Our...

READ MORE

MBE back-illuminated silicon Geiger-mode avalanche photodiodes for enhanced ultraviolet response

Published in:
SPIE Vol. 8033, Advanced Photon Counting Techniques V, 25 April 2011, 80330D.

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin (< 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes it possible to build low-dark-count-rate single-photon detectors with high quantum efficiency extending to deep ultraviolet wavelengths. This paper reviews our process for fabricating MBE back-illuminated silicon Geigermode avalanche photodiode arrays and presents characterization of initial test devices.
READ LESS

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin ( 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes...

READ MORE

Overlapped digital subarray architecture for multiple beam phased array radar

Author:
Published in:
EuCAP 2011, 5th European Conf. on Antrennas and Propagation, 11-15 April 2011, pp. 3027-3030.

Summary

MIT Lincoln Laboratory is conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated Circuits and panel-based Line Replaceable Unit (LRU) will be presented. A program plan for risk reduction and system demonstration will be outlined.
READ LESS

Summary

MIT Lincoln Laboratory is conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated...

READ MORE

Uniformity study of wafer-scale InP-to-silicon hybrid integration

Published in:
Appl. Phys. A, Mat. Sci. & Process., Vol. 103, No. 1, April 2011, pp. 213-218.

Summary

In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than 1 nm change in average peak wavelength, and even improved peak intensity (4% better) and full width at half maximum (41% better) after 150 mm in diameter epitaxial transfer. Small and uniformly distributed residual strain in all sizes of bonding, which is measured by high-resolution X-ray diffraction Omega- 2Theta mapping, and employment of a two-period InP-InGaAsP superlattice at the bonding interface contributes to the improvement of PL response. Preservation of multiple quantum-well integrity is also verified by high-resolution transmission electron microscopy.
READ LESS

Summary

In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than...

READ MORE

A space-time multiscale analysis system: a sequential variational analysis approach

Published in:
Monthly Weather Rev., Vol. 139, No. 4, April 2011, pp. 1224-1240.

Summary

As new observation systems are developed and deployed, new and presumably more precise information is becoming available for weather forecasting and climate monitoring. To take advantage of these new observations, it is desirable to have schemes to accurately retrieve the information before statistical analyses are performed so that statistical computation can be more effectively used where it is needed most. The authors propose a sequential variational approach that possesses advantages of both a standard statistical analysis [such as with a three-dimensional variational data assimilation (3DVAR) or Kalman filter] and a traditional objective analysis (such as the Barnes analysis). The sequential variational analysis is multiscale, inhomogeneous, anisotropic, and temporally consistent, as shown by an idealized test case and observational datasets in this study. The real data cases include applications in two-dimensional and three-dimensional space and time for storm outflow boundary detection (surface application) and hurricane data assimilation (three-dimensional space application). Implemented using a multigrid technique, this sequential variational approach is a very efficient data assimilation method.
READ LESS

Summary

As new observation systems are developed and deployed, new and presumably more precise information is becoming available for weather forecasting and climate monitoring. To take advantage of these new observations, it is desirable to have schemes to accurately retrieve the information before statistical analyses are performed so that statistical computation...

READ MORE