Publications
Low-profile dual-polarized UHF array antenna
Summary
Summary
A low-profile dual-polarized UHF array antenna has been developed for wide field-of-view dual sector coverage in the 250 to 450 MHz frequency range for communications or radar applications. The antenna utilizes a pair of parasitically-tuned dipole arrays for horizontal polarization and a pair of parasitically-tuned monopole arrays for vertical polarization...
Low cost multifunction phased array radar concept
Summary
Summary
MIT Lincoln Laboratory and M/A-COM are jointly conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit...
Ultrawideband VHF/UHF dipole array antenna
Summary
Summary
A linearly-polarized ultrawideband dipole array antenna has been developed for coverage in the VHF/UHF frequency range for communications or radar applications. The antenna design utilizes a horizontally polarized array of thick tubular dipole elements above a ground plane. Numerical electromagnetic simulations were used to analyze and optimize the antenna parameters...
SOI-enabled three-dimensional integrated-circuit technology
Summary
Summary
We have demonstrated a new 3D device interconnect approach, with direct back side via connection to a transistor in a 3D stack, resulting in a reduced 3D footprint by an estimated ~40% as well as potential for lower series resistance. We have demonstrated high yield 3D through-oxide-via (TOV) with a...
A nanoparticle convective directed assembly process for the fabrication of periodic surface enhanced Raman spectroscopy substrates
Summary
Summary
A highly scalable approach for producing surface-enhanced Raman spectroscopy substrates is introduced. The novel method involves assembling individual nanoparticles in pre-defined templates, one particle per template, forming a high denisity of nanogaps over large areas, while decoupling nanostructure synthesis from placement.
Robustness of optimized collision avoidance logic to modeling errors
Summary
Summary
Collision avoidance systems, whether for manned or unmanned aircraft, must reliably prevent collision while minimizing alerts. Deciding what action to execute at a particular instant may be framed as a multiple-objective optimization problem that can be solved offline by computers. Prior work has explored methods of efficiently computing the optimal...
A statistical learning approach to the modeling of aircraft taxi time
Summary
Summary
Modeling aircraft taxi operations is an important element in understanding current airport performance and where opportunities may lie for improvements. A statistical learning approach to modeling aircraft taxi time is presented in this paper. This approach allows efficient identification of relatively simple and easily interpretable models of aircraft taxi time...
Hogs and slackers: using operations balance in a genetic algorithm to optimize sparse algebra computation on distributed architectures
Summary
Summary
We present a framework for optimizing the distributed performance of sparse matrix computations. These computations are optimally parallelized by distributing their operations across processors in a subtly uneven balance. Because the optimal balance point depends on the non-zero patterns in the data, the algorithm, and the underlying hardware architecture, it...
Graph-embedding for speaker recognition
Summary
Summary
Popular methods for speaker classification perform speaker comparison in a high-dimensional space, however, recent work has shown that most of the speaker variability is captured by a low-dimensional subspace of that space. In this paper we examine whether additional structure in terms of nonlinear manifolds exist within the high-dimensional space...
Field & (data) stream: a method for functional evolution of the Air Traffic Management Route Availability Planning Tool (RAPT)
Summary
Summary
A method coupling field evaluation with operations data analysis is presented as an effective means to functionally evolve a decision support system. The case study used to illustrate this method is the evaluation of the Route Availability Planning Tool (RAPT), a decision support tool to improve departure efficiency in convective...