Publications

Refine Results

(Filters Applied) Clear All

Competing cognitive resilient networks

Published in:
IEEE Trans. Cognit. Commun. and Netw., Vol. 2, No. 1, March 2016, pp. 95-109.

Summary

We introduce competing cognitive resilient network (CCRN) of mobile radios challenged to optimize data throughput and networking efficiency under dynamic spectrum access and adversarial threats (e.g., jamming). Unlike the conventional approaches, CCRN features both communicator and jamming nodes in a friendly coalition to take joint actions against hostile networking entities. In particular, this paper showcases hypothetical blue force and red force CCRNs and their competition for open spectrum resources. We present state-agnostic and stateful solution approaches based on the decision theoretic framework. The state-agnostic approach builds on multiarmed bandit to develop an optimal strategy that enables the exploratory-exploitative actions from sequential sampling of channel rewards. The stateful approach makes an explicit model of states and actions from an underlying Markov decision process and uses multiagent Q-learning to compute optimal node actions. We provide a theoretical framework for CCRN and propose new algorithms for both approaches. Simulation results indicate that the proposed algorithms outperform some of the most important algorithms known to date.
READ LESS

Summary

We introduce competing cognitive resilient network (CCRN) of mobile radios challenged to optimize data throughput and networking efficiency under dynamic spectrum access and adversarial threats (e.g., jamming). Unlike the conventional approaches, CCRN features both communicator and jamming nodes in a friendly coalition to take joint actions against hostile networking entities...

READ MORE

Development of a real-time hardware-in-the-loop power systems simulation platform to evaluate commercial microgrid controllers

Summary

This report describes the development of a real-time hardware-in-the-loop (HIL) power system simulation platform to evaluate commercial microgrid controllers. The effort resulted in the successful demonstration of HIL simulation technology at a Technical Symposium organized by the Mass Clean Energy Center (CEC) for utility distribution system engineers, project developers, systems integrators, equipment vendors, academia, regulators, City of Boston officials, and Commonwealth officials. Actual microgrid controller hardware was integrated along with actual, commercial genset controller hardware in a particular microgrid configuration, which included dynamic loads, distributed energy resources (DERs), and conventional power sources. The end product provides the ability to quickly and cost-effectively assess the performance of different microgrid controllers as quantified by certain metrics, such as fuel consumption, power flow management precision at the point of common coupling, load-not-served (LNS) while islanded, peak-shaving kWh, and voltage stability. Additional applications include protection system testing and evaluation, distributed generation prime mover controller testing, integration and testing of distribution control systems, behavior testing and studies of DER controls, detailed power systems analysis, communications testing and integration, and implementation and evaluation of smart grid concepts. Microgrids and these additional applications promise to improve the reliability, resiliency, and efficiency of the nation's aging but critical power distribution systems. This achievement was a collaborative effort between MIT Lincoln Laboratory and industry microgrid controller manufacturers. This work was sponsored by the Department of Homeland Security (DHS), Science and Technology Directorate (S&T) and the Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability.
READ LESS

Summary

This report describes the development of a real-time hardware-in-the-loop (HIL) power system simulation platform to evaluate commercial microgrid controllers. The effort resulted in the successful demonstration of HIL simulation technology at a Technical Symposium organized by the Mass Clean Energy Center (CEC) for utility distribution system engineers, project developers, systems...

READ MORE

Photonic lantern adaptive spatial mode control in LMA fiber amplifiers

Published in:
Opt. Express, Vol. 24, No. 4, 22 February 2016, pp. 3405-13.

Summary

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By actively adjusting the relative phase of the single-mode inputs, near-unity coherent combination resulting in a single fundamental mode at the output is achieved.
READ LESS

Summary

We demonstrate adaptive-spatial mode control (ASMC) in few-moded double-clad large mode area (LMA) fiber amplifiers by using an all-fiber-based photonic lantern. Three single-mode fiber inputs are used to adaptively inject the appropriate superposition of input modes in a multimode gain fiber to achieve the desired mode at the output. By...

READ MORE

Raman spectra and cross sections of ammonia, chlorine, hydrogen sulfide, phosgene, and sulfur dioxide toxic gases in the fingerprint region 400-1400 cm-1

Published in:
AIP Advances, Vol. 6, No. 2, February 2016, 025310, doi: 10.1063/1.4942109.

Summary

Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact (< 2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these measurements. Two Raman modes are observed at 934 and 967 cm-1 in NH3. Three Raman modes are observed in Cl2 at 554, 547, and 539 cm-1, which are due to the 35/35 35/37, and 37/37 Cl isotopes, respectively. Raman modes are observed at 870, 570, and 1151 cm-1 in H2S, COCl2, and SO2, respectively. Values of 3.68 ± 0.26x10-32 cm2/sr (3.68 ± 0.26x10-36 m2/sr), 1.37 ± 0.10x10-30 cm2/sr (1.37 ± 0.10x10-34 m2/sr), 3.25 ± 0.23x10-31 cm2/sr (3.25 ± 0.23x10-35 m2/sr), 1.63 ± 0.14x10-30 cm2/sr (1.63 ± 0.14x10-34 m2/sr), and 3.08 ± 0.22x10-30 cm2/sr (and 3.08 ± 0.22x10-34 m2/sr) were determined for the differential Raman cross section of the 967 cm-1 mode of NH3, sum of the 554, 547, and 539 cm-1 modes of Cl2, 870 cm-1 mode of H2S, 570 cm-1 mode of COCl2, and 1151 cm-1 mode of SO2, respectively, using the differential Raman cross section of 3.56 ± 0.14x10-31 cm2/sr (3.56 ± 0.14x10-35 m2/sr) for the 1285 cm-1 mode of CO2 as the reference.
READ LESS

Summary

Raman spectra of ammonia (NH3), chlorine (Cl2), hydrogen sulfide (H2S), phosgene (COCl2), and sulfur dioxide (SO2) toxic gases have been measured in the fingerprint region 400-1400 cm-1. A relatively compact ( 2'x2'x2'), sensitive, 532 nm 10 W CW Raman system with double-pass laser and double-sided collection was used for these...

READ MORE

En route sector capacity model final report

Author:
Published in:
MIT Lincoln Laboratory Report ATC-426

Summary

Accurate predictions of en route sector capacity are vital when analyzing the benefits of proposed new air traffic management decision-support tools or new airspace designs. Controller workload is the main determinant of sector capacity. This report describes a new workload-based capacity model that improves upon the Federal Aviation Administration's current Monitor Alert capacity model. Analysts often use Monitor Alert sector capacities in evaluating the benefits of decision-support aids or airspace designs. However, Monitor Alert, which was designed to warn controllers of possible sector overload, sets sector capacity limits based solely on handoff workload and fixed procedural constraints. It ignores the effects of conflict workload and recurring workload (from activities such as monitoring, vectoring, spacing, and metering). Each workload type varies differently as traffic counts and airspace designs are changed. When used for benefits analysis, Monitor Alert's concentration on a single workload type can lead to erroneous conclusions. The new model considers all three workload types. We determine the relative contribution of the three workload types by fitting the model to the upper frontiers that appear in peak daily sector traffic counts from today's system. When we fit the Monitor Alert model to these same peak traffic counts, it can only explain the observed frontiers by hypothesizing large handoff workload. Large handoff workload would imply that decision-support aids should focus on handoff tasks. The new model fits the traffic data with less error, and shows that recurring tasks create significantly more workload in all sectors than do handoff tasks. The new model also shows that conflict workload dominates in very small sectors. These findings suggest that it is more beneficial to develop decision-support aids for recurring tasks and conflict tasks than for handoff tasks.
READ LESS

Summary

Accurate predictions of en route sector capacity are vital when analyzing the benefits of proposed new air traffic management decision-support tools or new airspace designs. Controller workload is the main determinant of sector capacity. This report describes a new workload-based capacity model that improves upon the Federal Aviation Administration's current...

READ MORE

D4M and large array databases for management and analysis of large biomedical imaging data

Summary

Advances in medical imaging technologies have enabled the acquisition of increasingly large datasets. Current state-of-the-art confocal or multi-photon imaging technology can produce biomedical datasets in excess of 1 TB per dataset. Typical approaches for analyzing large datasets rely on downsampling the original datasets or leveraging distributed computing resources where small subsets of images are processed independently. These approaches require significant overhead on the part of the programmer to load the desired sub-volume from an array of image files into memory. Databases are well suited for indexing and retrieving components of very large datasets and show significant promise for the analysis of 3D volumetric images. In particular, array-based databases such as SciDB utilize an architecture that supports massive parallel processing while also providing database services such as data management and fast parallel queries. In this paper, we will present a new set of tools that leverage the D4M (Dynamic Distributed Dimensional Data Model) toolbox for analyzing giga-voxel biomedical datasets. By combining SciDB and the D4M toolbox, we demonstrate that we can access large volumetric data and perform large-scale bioinformatics analytics efficiently and interactively. We show that it is possible to achieve an ingest rate of 2.8 million entries per second for importing large datasets into SciDB. These tools provide more efficient ways to access random sub-volumes of massive datasets and to process the information that typically cannot be loaded into memory. This work describes the D4M and SciDB tools that we developed and presents the initial performance results.
READ LESS

Summary

Advances in medical imaging technologies have enabled the acquisition of increasingly large datasets. Current state-of-the-art confocal or multi-photon imaging technology can produce biomedical datasets in excess of 1 TB per dataset. Typical approaches for analyzing large datasets rely on downsampling the original datasets or leveraging distributed computing resources where small...

READ MORE

Comb generator design for SWaP-constrained applications

Published in:
2016 IEEE Radio and Wireless Symp., RWS 2016, 24-27 January 2016.
Topic:
R&D group:

Summary

Many wireless devices have requirements that emphasize low size, weight and power for increased functionality and extended lifetimes. The additional complexity of these devices mandates the need to dynamically verify that all sub-system functions are fully operational. These tests can only be performed internal to the unit, and a circuit that could be utilized to meet this demand should be constructed to be as simple as possible. This paper presents both a novel set of equations to represent a compact comb generator circuit using a step recovery diode as well as unique sequential measurements of a prototype to provide greater insight into the design. The analyzed circuit requires no bias voltage, and effectively produces harmonics up to 2 GHz with a 2 MHz input signal, which is sufficient for adding built-in-test capability to most wireless devices.
READ LESS

Summary

Many wireless devices have requirements that emphasize low size, weight and power for increased functionality and extended lifetimes. The additional complexity of these devices mandates the need to dynamically verify that all sub-system functions are fully operational. These tests can only be performed internal to the unit, and a circuit...

READ MORE

Simultaneous Transmit and Receive (STAR) mobile testbed

Published in:
2016 IEEE Radio and Wireless Symp., RWS 2016, 24-27 January 2016.
Topic:
R&D group:

Summary

Simultaneous Transmit and Receive (STAR) systems typically utilize multiple cancellation layers to improve system isolation and avoid self-interference. The design of these different layers must be evaluated both individually and as a whole to determine their effectiveness in various environments. A flexible and reusable mobile testbed was constructed to aid in the development and assessment of these different STAR technologies for both stationary and non-stationary applications. The usefulness of this platform was confirmed during the integration of an example STAR system that measured greater than 100 dB of total system isolation over a 30 MHz bandwidth centered at 2.45 GHz.
READ LESS

Summary

Simultaneous Transmit and Receive (STAR) systems typically utilize multiple cancellation layers to improve system isolation and avoid self-interference. The design of these different layers must be evaluated both individually and as a whole to determine their effectiveness in various environments. A flexible and reusable mobile testbed was constructed to aid...

READ MORE

Reagent approaches for improved detection of chlorate and perchlorate salts via thermal desorption and ionization

Published in:
Rapid Commun. Mass Spectrom., Vol. 30, No. 1, 15 January 2016, pp. 191-8, DOI: 10.1002/rcm.7427.

Summary

RATIONALE: Techniques for improving the detectability of chlorate and perchlorate salts with thermal desorption based ionizers (i.e. radioactive, corona discharge and photoionization-based) are desired. This work employs acidic reagents to chemically transform chlorate and perchlorate anions into traces of chloric and perchloric acid. These high vapor pressure acids are easier to detect than the originating salts. METHODS: The efficacy of the reagent chemistry was quantified with a triple-quadrupole mass spectrometer interfaced with a custom-built thermal-desorption atmospheric-pressure chemical ionization (TD-APCI) source. Additional experiments were conducted using tandem IMS/MS instrumentation. Reagent pKa and pH values were varied in order to gain a better understanding of how those parameters affect the degree of observed signal enhancement. RESULTS: Samples of chlorates and perchlorates treated with liquid acidic reagents exhibit signal enhancement of up to six orders of magnitude compared with signals from untreated analytes. Three orders of magnitude of signal enhancement are demonstrated using solid-state reagents, such as weakly acidic salts and polymeric acids. Data is presented that demonstrates the compatibility of the solid-state approach with both MS and IMS/MS platforms. CONCLUSIONS: Several methods of acidification were demonstrated for enhanced vaporization and detection of chlorates and perchlorates. For applications where rapid surface collection and analysis for chlorates and perchlorates are desired, the solid-state approaches offer the simplest means to integrate the reagent chemistry into MS or IMS detection.
READ LESS

Summary

RATIONALE: Techniques for improving the detectability of chlorate and perchlorate salts with thermal desorption based ionizers (i.e. radioactive, corona discharge and photoionization-based) are desired. This work employs acidic reagents to chemically transform chlorate and perchlorate anions into traces of chloric and perchloric acid. These high vapor pressure acids are easier...

READ MORE

Recommender systems for the Department of Defense and intelligence community

Summary

Recommender systems, which selectively filter information for users, can hasten analysts' responses to complex events such as cyber attacks. Lincoln Laboratory's research on recommender systems may bring the capabilities of these systems to analysts in both the Department of Defense and intelligence community.
READ LESS

Summary

Recommender systems, which selectively filter information for users, can hasten analysts' responses to complex events such as cyber attacks. Lincoln Laboratory's research on recommender systems may bring the capabilities of these systems to analysts in both the Department of Defense and intelligence community.

READ MORE