Publications

Refine Results

(Filters Applied) Clear All

Afterpulsing in Geiger-mode avalanche photodiodes for 1.06um wavelength

Summary

We consider the phenomenon of afterpulsing in avalanche photodiodes (APDs) operating in gated and free-running Geiger mode. An operational model of afterpulsing and other noise characteristics of APDs predicts the noise behavior observed in the free-running mode. We also use gated-mode data to investigate possible sources of afterpulsing in these devices. For 30-um-diam, 1.06-um-wavelength InGaAsP/InP APDs operated at 290 K and 4 V overbias, we obtained a dominant trap lifetime of td=0.32 us, a trap energy of 0.11 eV, and a baseline dark count rate 245 kHz.
READ LESS

Summary

We consider the phenomenon of afterpulsing in avalanche photodiodes (APDs) operating in gated and free-running Geiger mode. An operational model of afterpulsing and other noise characteristics of APDs predicts the noise behavior observed in the free-running mode. We also use gated-mode data to investigate possible sources of afterpulsing in these...

READ MORE

Exploiting nonacoustic sensors for speech encoding

Summary

The intelligibility of speech transmitted through low-rate coders is severely degraded when high levels of acoustic noise are present in the acoustic environment. Recent advances in nonacoustic sensors, including microwave radar, skin vibration, and bone conduction sensors, provide the exciting possibility of both glottal excitation and, more generally, vocal tract measurements that are relatively immune to acoustic disturbances and can supplement the acoustic speech waveform. We are currently investigating methods of combining the output of these sensors for use in low-rate encoding according to their capability in representing specific speech characteristics in different frequency bands. Nonacoustic sensors have the ability to reveal certain speech attributes lost in the noisy acoustic signal; for example, low-energy consonant voice bars, nasality, and glottalized excitation. By fusing nonacoustic low-frequency and pitch content with acoustic-microphone content, we have achieved significant intelligibility performance gains using the DRT across a variety of environments over the government standard 2400-bps MELPe coder. By fusing quantized high-band 4-to-8-kHz speech, requiring only an additional 116 bps, we obtain further DRT performance gains by exploiting the ear's insensitivity to fine spectral detail in this frequency region.
READ LESS

Summary

The intelligibility of speech transmitted through low-rate coders is severely degraded when high levels of acoustic noise are present in the acoustic environment. Recent advances in nonacoustic sensors, including microwave radar, skin vibration, and bone conduction sensors, provide the exciting possibility of both glottal excitation and, more generally, vocal tract...

READ MORE

Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers

Summary

We have developed focal-plane arrays and laser-radar (ladar) imaging systems based on Geiger-mode avalanche photodiodes (APDs) integrated with high-speed all-digital CMOS timing circuits. A Geiger-mode APD produces a digital pulse upon detection of a single photon. This pulse is used to stop a fast digital counter in the pixel circuit, thereby measuring photon arrival time. This "photon-to-digital conversion" yields quantum-limited sensitivity and noiseless readout, enabling high-performance ladar systems. Previously reported focal planes, based on bump bonding or epoxy bonding the APDs to foundry chips, had coarse (100um) pixel spacing and 0.5ns timing quantization.
READ LESS

Summary

We have developed focal-plane arrays and laser-radar (ladar) imaging systems based on Geiger-mode avalanche photodiodes (APDs) integrated with high-speed all-digital CMOS timing circuits. A Geiger-mode APD produces a digital pulse upon detection of a single photon. This pulse is used to stop a fast digital counter in the pixel circuit...

READ MORE

An exploratory study of modeling enroute pilot convective storm flight deviation behavior

Published in:
12th Conf. on Aviation Range and Aerospace Meteorology, 2 February 2006.

Summary

The optimization of traffic flows in highly congested airspace with rapidly varying convective weather is an extremely complex problem. Aviation weather systems such as the Corridor Integrated Weather System (CIWS) provide weather products and forecasts that aid en route traffic managers in making tactical routing decisions in convective weather, but traffic managers need automated decision support systems that integrate flight information, trajectory models and convective weather products to assist in developing and executing convective weather mitigation plans. A key element of an integrated ATM/wx decision support system is the ability to predict automatically when pilots in en route airspace will choose to deviate around convective weather and how far they will deviate from their planned path. The FAA Aeronautical Information Manual suggests that pilots avoid thunderstorms characterized by intense radar echo in en route airspace by at least 20 nautical miles (40 km). However, a recent study (Rhoda, et. al., 2002) of pilot behavior in both terminal and en route airspace near Memphis, TN suggested that pilots fly over high reflectivity cells in en route airspace and penetrate lower cells whose reflectivity is less than VIP level 3. Recent operational experience with CIWS supports the Rhoda findings (Robinson, et. al., 2004). This study presents initial results of research to develop a quantitative model that would predict when a pilot will deviate around convective weather in en route airspace. It also presents statistics that characterize hazard avoidance distances and weather penetrations. The results are based on the analysis of more than 800 flight trajectories through two Air Traffic Control (ATC) en route super-sectors (geographical regions that include several adjacent ATC en route sectors) on five days in the summer of 2003. One supersector from the Indianapolis Air Route Traffic Control Center (ZID ARTCC) encompassed southern Indiana, southwestern Ohio and northern Kentucky (ZID); the other, located in the Cleveland ARTCC (ZOB), included northern Ohio, along the southern shore of Lake Erie (ZOB). The weather encountered along the flight trajectories was characterized by the CIWS high-resolution precipitation (VIL) and radar echo tops mosaic (Klingle-Wilson and Evans, 2005) and NLDN lightning products. Flight trajectories were taken from the Enhanced Traffic Management System (ETMS).
READ LESS

Summary

The optimization of traffic flows in highly congested airspace with rapidly varying convective weather is an extremely complex problem. Aviation weather systems such as the Corridor Integrated Weather System (CIWS) provide weather products and forecasts that aid en route traffic managers in making tactical routing decisions in convective weather, but...

READ MORE

A "demand pull" approach to short term forecast development and testing

Author:
Published in:
86th AMS Annual Mtg., 1st Symp. on Policy Research, January 2006.

Summary

We discuss two specific short term aviation weather forecasts - convection and ceiling - to illustrate the issues that arise in thinking about the overall decision support system, key users, and training needed to generate benefits. We also consider reducing weather-related fatal accidents. Second, what is the preexisting "baseline" of aviation forecasts/decision processes that already exists to address the user needs? In most cases, there are already various weather information sources that can be viewed as providing a short term forecast (e.g., a Center Weather Service Unit (CWSU) meteorologist, persistence, or animation loops of the past weather). How well do we understand how the "baseline" forecast and the associated user decision support system operate? How will the new forecast and its decision support compare? What are the training implications if the new forecast is rather different than the "baseline"? Third, how will we measure the change in system performance? For example, if the new forecast claims to help reduce delays and/or accidents, how will one address differences in the weather between the "before" and "after" time periods? How will one determine whether the new forecast is in fact the key factor, if there was a change? The paper concludes with some suggestions for development and testing of new aviation forecasts to improve safety and reduce delays.
READ LESS

Summary

We discuss two specific short term aviation weather forecasts - convection and ceiling - to illustrate the issues that arise in thinking about the overall decision support system, key users, and training needed to generate benefits. We also consider reducing weather-related fatal accidents. Second, what is the preexisting "baseline" of...

READ MORE

Upgrade and technology transfer of the San Francisco Marine Stratus Forecast system to the National Weather Service

Published in:
86th AMS Annual Mtg., 1st Symp. on Policy Research, January 2006.

Summary

The local airspace surrounding the San Francisco International Airport (SFO) is prone to regular occurrences of low ceiling conditions from May through October due to the intrusion of marine stratus along the Pacific coast. The low cloud conditions prohibit dual parallel landings of aircraft to the airport's closely spaced parallel runways, thus effectively reducing the arrival capacity by a factor of two. The behavior of marine stratus evolves on a daily cycle, filling the San Francisco Bay region overnight, and dissipating during the morning. Often the low ceiling conditions persist throughout the morning hours and interfere with the high rate of air traffic scheduled into SFO from mid-morning to early afternoon. The result is a substantial number of delayed flights into the airport and a negative impact on the National Air Space (NAS). Air traffic managers face a continual challenge of anticipating available operating capacity so that the demand of incoming planes can be metered to match the availability of arrival slots.
READ LESS

Summary

The local airspace surrounding the San Francisco International Airport (SFO) is prone to regular occurrences of low ceiling conditions from May through October due to the intrusion of marine stratus along the Pacific coast. The low cloud conditions prohibit dual parallel landings of aircraft to the airport's closely spaced parallel...

READ MORE

A characterization of NWP ceiling and visibility forecasts for the terminal airspace

Published in:
86th AMS Annual Meeting, 1st Symp. on Policy Research, 2006.

Summary

The Federal Aviation Administration (FAA) is sponsoring a Terminal Ceiling and Visibility (C&V) initiative to provide automated C&V guidance to the air traffic managers for both tactical (0-2 hour) and strategic (3-12 hour) decision making. To meet these requirements, particularly in the strategic time frame, it will most likely be necessary for the C&V system to incorporate guidance from an explicit numerical weather prediction (NWP) model. If NWP forecasts are found to be suitable for this application, they will be used as the backbone of the terminal C&V forecast system. More details on the terminal area C&V forecast product development for the FAA can be found in Allan et al. (2004). Before these NWP forecast products can be used, it is necessary to first characterize their accuracy relative to operational air traffic control (ATC) requirements. This makes it possible to exploit observed strengths, avoid weaknesses, and facilitate a better utilization of NWP forecast products. This study provides an assessment tailored specifically to address the terminal C&V application. Consequently, the results represent forecast performance for relatively small geographic locations that for practical purposes can be considered point forecasts. It is our intention to answer four questions with this preliminary analysis: 1. How accurate are the NWP forecasts relative to the observational truth and a human generated forecast? 2. For the terminals of interest to this study (i.e. New York City Airports), are there any advantages to utilizing a non-hydrostatic mesoscale model run at horizontal resolutions of 3 km or less? 3. Do the NWP models exhibit forecast skill for non-traditional forecast metrics such as trends in C&V parameters and timings of threshold crossings associated with the onset and clearing of low ceiling and visibility conditions? 4. Are there obvious situations/conditions during which the NWP forecasts have more/less skill? In addition to a report on the NWP terminal ceiling and visibility forecast accuracy, we provide preliminary recommendations on the direction we feel this line of research should pursue, and where we see opportunities to utilize NWP forecasts in an automated terminal C&V decision guidance system. An ancillary goal of this study is to assemble the analysis software infrastructure required to quantitatively evaluate numerical forecast accuracy. We envision using these tools to develop and test modifications to the translation algorithms and techniques that will be necessary to integrate the NWP forecasts into the C&V guidance system. They will be instrumental in reducing the time required to make engineering turns during the upcoming development and implementation stages of this research.
READ LESS

Summary

The Federal Aviation Administration (FAA) is sponsoring a Terminal Ceiling and Visibility (C&V) initiative to provide automated C&V guidance to the air traffic managers for both tactical (0-2 hour) and strategic (3-12 hour) decision making. To meet these requirements, particularly in the strategic time frame, it will most likely be...

READ MORE

Implications of a successful benefits demonstration for integrated weather/air traffic management (WX/ATM) system development and testing

Author:
Published in:
12th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 29 January- 2 February 2006.

Summary

One of the major challenges in the US National Airspace System (NAS) today is improving the decisions made when adverse aviation weather occurs. Major increases in the usage of high altitude en route airspace by regional and corporate jets, coupled with greater use of "secondary" airports by low cost air carriers, have dramatically increased the complexity of operating the NAS during bad weather. One potentially powerful approach to improving decision making is to explicitly combine aviation weather information with aviation system information to create an integrated weather/air traffic management (wx/ATM) system that improves the productivity of the NAS operators. However, it will not be enough to be able to develop the technology that could make system improvements possible; it has now become increasingly important to demonstrate quantitative user benefits for any new initiatives. In this paper, we discuss the implications on the development and testing of wx/ATM systems of the need for a successful operational benefits demonstration of the new capability. The paper proceeds as follows. In the next section, we discuss how an integrated wx/ATM system differs from the "conventional" aviation weather decision process. Section 3 describes current efforts by the FAA and the Office of Management and Budget (OMB) to appropriately consider operational benefits as a factor in investment decision making. Section 4 discusses key elements of an "operational benefits centric" approach to wx/ATM system development and testing. Sections 5 and 6 discuss two contemporary examples of integrated wx/ATM systems in the context of section 4. The paper concludes with a summary and recommendations.
READ LESS

Summary

One of the major challenges in the US National Airspace System (NAS) today is improving the decisions made when adverse aviation weather occurs. Major increases in the usage of high altitude en route airspace by regional and corporate jets, coupled with greater use of "secondary" airports by low cost air...

READ MORE

Quantifying air traffic control productivity enhancement for aviation convective weather decision support systems

Author:
Published in:
12th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 28 January - 2 February 2006.

Summary

Major Federal Aviation Administration (FAA) planning documents (e.g., the FAA Flight Plan 2005-2008, the FAA Air Traffic Organization Fiscal Year 2005 Business Plan, and the Operational Evolution Plan) stress the importance of: Improving National Airspace System operations efficiency by increasing safety and capacity (e.g., reducing delays) and Providing FAA services more efficiently, such that operations costs can be reduced while improving safety and capacity. Continued improvements in air traffic delay mitigation in the NAS are imperative, given expectations for significant increases in near-term air traffic demand. The latest FAA aerospace growth forecast projects a 30% increase in Air Route Traffic Control Center (ARTCC) operations by 2015 (FAA Office of Aviation Policy and Plans, 2005). Improving Air Traffic Control (ATC) productivity during convective weather impact events is particularly important. Air traffic demand is escalating in an airspace network near capacity even in clear-weather. This will limit the ability to exploit advancements made in mitigating en route convective weather delays, unless fielded decision support systems are able to improve traffic management efficiency. Moreover, it is also essential that ATC productivity (e.g., as measured by the number of employees and overtime) be improved, given the reduction in Aviation Trust funding from the passenger ticket tax and overall federal funding constraints. We have previously described how a contemporary convective weather decision support system - the Corridor Integrated Weather System (CIWS) - can facilitate significantly improved capacity enhancing decisions, such as keeping routes open longer and proactive rerouting (e.g., Evans et al. 2005; Robinson et al. 2004). These CIWS-enabled capacity enhancements were shown to result in significant reductions in air traffic delays, airline operating costs, and delay-incurred passenger costs (Robinson et al. 2004). A study of the CIWS contributions to ATC productivity enhancements began in 2005. As part of this effort, real-time observations of CIWS product usage and the time to accomplish weather impact mitigation planning decisions during multiday thunderstorm events were carried out at 8 U.S. ARTCCs. A description of the design (and methodological challenges) of this experiment are presented in Section 2 of this paper. Improved ATC productivity was found to have two components: (1) Reduced workload and increased operational efficiency, as characterized by the amount of time required to develop and implement convective weather mitigation plans and the ability to enhance staffing decisions (2) Increased frequency of capacity enhancing decisions. Results demonstrating how CIWS helped traffic managers reduce workload and increase operational efficiency through time-savings and improved decision-making are presented in Section 3. Important factors such as the variation in performance from ARTCC to ARTCC are discussed in some detail. We show that a very important factor in this performance is whether the Area Supervisors at an ARTCC have direct access to CIWS products. The paper concludes by discussing future plans for CIWS ATC productivity enhancement investigations.
READ LESS

Summary

Major Federal Aviation Administration (FAA) planning documents (e.g., the FAA Flight Plan 2005-2008, the FAA Air Traffic Organization Fiscal Year 2005 Business Plan, and the Operational Evolution Plan) stress the importance of: Improving National Airspace System operations efficiency by increasing safety and capacity (e.g., reducing delays) and Providing FAA services...

READ MORE

Terminal ceiling & visibility product development for northeast airports

Author:
Published in:
86th AMS Annual Meeting, 1st Symp. on Policy Research, 27 January - 3 February 2006.

Summary

Within the FAA Aviation Weather Research Program (AWRP), the Terminal Ceiling and Visibility Product Development Team (TC&V PDT) is responsible for development of forecast guidance products to mitigate the loss of terminal operating capacity associated with low ceiling and visibility restrictions. In particular, accurate anticipation of the onset and cessation of Instrument Meteorological Conditions (IMC) allows the opportunity for air traffic managers to effectively regulate traffic to utilize available capacity. The TC&V PDT approach is to develop forecast guidance solutions that are specific to individual high volume terminals that experience substantial loss of capacity. Due to the inter-hub dependencies of traffic flow, efficiency gains at individual key airports translate to a general reduction of total aircraft delay through the entire National Airspace System. The first key airport targeted was San Francisco International Airport (SFO). A system was developed to provide forecast guidance of the clearing time of stratus cloud that frequently restricts approach capacity during the summer months (Clark, 2002). This prototype system was transferred to the National Weather Service in 2004 (Ivaldi et al., 2006) The current focus of the Terminal C&V PDT is on ceiling and visibility restrictions associated with synoptic-scale transient weather systems that regularly impact the Northeast U.S. during the winter months, typically from November through April. The runway configuration and instrumentation at many of the major northeast terminals (Boston, New York Laguardia and Kennedy, Newark, Philadelphia, etc.) are very susceptible to IMC weather, resulting in a dramatic reduction in operating capacity. The multitude of phenomena contributing to IMC (e.g. frontal cloud shields, advection and radiation fog, precipitation of varying intensity and type, etc.) poses a difficult forecasting challenge. The Terminal C&V PDT is pursuing a variety of candidate technologies that will be integrated to provide a comprehensive solution. Trials of these forecast technologies are being developed using the NYC airspace as an experimental domain for both weather and operations. Development is progressing on two fronts: 1) improvement in the delivery of existing C&V information, and 2) development of new forecast technologies. The ultimate objective is integration of forecasts with operational information to provide a complete decision guidance tool. This paper introduces an experimental display tool and distribution mechanism for delivering C&V data and forecasts, focused on the NYC airspace. Initially, this tool relies on routinely available weather observations and forecasts. The intent of providing such a tool early in the product development stage is to engage the operational community (forecasters, dispatchers, and traffic managers) in the assessment and selection of candidate forecast technologies that are most appropriate for supporting operational decision making. During development, these technologies will be inserted into the display framework to evaluate their effectiveness in real time trials. An overview of the technologies under consideration is provided.
READ LESS

Summary

Within the FAA Aviation Weather Research Program (AWRP), the Terminal Ceiling and Visibility Product Development Team (TC&V PDT) is responsible for development of forecast guidance products to mitigate the loss of terminal operating capacity associated with low ceiling and visibility restrictions. In particular, accurate anticipation of the onset and cessation...

READ MORE