Publications

Refine Results

(Filters Applied) Clear All

Airspace encounter models for estimating collision risk

Published in:
J. Guidance, Control, and Dynamics, Vol. 33, No. 2, March-April 2010, pp. 487-499.

Summary

Airspace encounter models, providing a statistical representation of geometries and aircraft behavior during a close encounter, are required to estimate the safety and robustness of collision avoidance systems. Prior encounter models, developed to certify the Traffic Alert and Collision Avoidance System, have been limited in their ability to capture important characteristics of encounters as revealed by recorded surveillance data, do not capture the current mix of aircraft types or noncooperative aircraft, and do not represent more recent airspace procedures. This paper describes a methodology for encounter model construction based on a Bayesian statistical framework connected to an extensive set of national radar data. In addition, this paper provides examples of using several such high-fidelity models to evaluate the safety of collision avoidance systems for manned and unmanned aircraft.
READ LESS

Summary

Airspace encounter models, providing a statistical representation of geometries and aircraft behavior during a close encounter, are required to estimate the safety and robustness of collision avoidance systems. Prior encounter models, developed to certify the Traffic Alert and Collision Avoidance System, have been limited in their ability to capture important...

READ MORE

FDSOI process technology for subthreshold-operation ultralow-power electronics

Published in:
Proc. of the IEEE, Vol. 98, No. 2, February 2010, pp. 333-342.
Topic:

Summary

Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation at 0.3 V may achieve a 97% reduction in switching energy compared to conventional transistors. The process technology described in this article takes advantage of the capacitance and performance benefits of thin-body silicon-oninsulator devices, combined with a workfunction engineered mid-gap metal gate.
READ LESS

Summary

Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation...

READ MORE

Model-based optimization of airborne collision avoidance logic

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is designed to reduce the risk of mid-air collisions by providing resolution advisories to pilots. The current version of the collision avoidance logic was hand-crafted over the course of many years and contains many parameters that have been tuned to varying extents and heuristic rules whose justification has been lost. Further development of the TCAS system is required to make the system compatible with next generation air traffic control procedures and surveillance systems that will reduce separation between aircraft. This report presents a decision-theoretic approach to optimizing the TCAS logic using probabilistic models of aircraft behavior and a cost metric that balances the cost of alerting with the cost of collision. Such an approach ahs the potential for meeting or exceeding the current safety level while lowering the false alert rate and simplifing the process of re-optimizing the logic in response to changes in the airspace and sensor capabilities.
READ LESS

Summary

The Traffic Alert and Collision Avoidance System (TCAS) is designed to reduce the risk of mid-air collisions by providing resolution advisories to pilots. The current version of the collision avoidance logic was hand-crafted over the course of many years and contains many parameters that have been tuned to varying extents...

READ MORE

Severe weather avoidance program performance metrics for New York departure operations

Published in:
14th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 16-21 January 2010.

Summary

When operationally significant weather affects the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. Following a SWAP, the day's events are reviewed and the TFM initiatives used are evaluated to understand their impact on the traffic flows, benefits, and disadvantages. These analyses require an accurate representation of the conditions during SWAP and objective, data-driven metrics to determine the effectiveness of the implemented TFM initiatives, and to identify opportunities for improved decision making in future events. As part of the ongoing development and evaluation of the Route Availability Planning Tool (RAPT), a departure management decision support prototype currently deployed in New York, several detailed metrics were developed to streamline these analyses. This paper focuses on metrics that address the most significant concern regarding departure flows from New York airports: the timely reopening of departure routes that have been closed due to convective weather impacts. These metrics are derived from two datasets: flight tracks from the Enhanced Traffic Management System (ETMS) to monitor the flight traffic, and route blockage from the Route Availability Planning Tool (RAPT) to determine the impact of weather on routes. RAPT automatically identifies Post-Impact-GREENs (PIGs) - the period of time when routes are clear ('GREEN') after being blocked by convective weather. Identifying PIGs early is a key element of the RAPT concept of operations, which enables traffic managers to restart traffic flow sooner along these routes, alleviating backed up ground conditions and reducing delay times for waiting flights. An automated system, that correlates PIGs identified by RAPT with departure traffic flows, calculates both the time from the appearance of each PIG until the first departure along the PIG route, and the departure rate on the route during the PIG period. Short times to first departure and high departure rates during PIGs indicate efficient departure management during SWAP. Arrival aircraft deviating into departure airspace is also managed by closing the departure route until the danger from incurring flights has passed. Arrival incursions are sometimes recorded in the National Traffic Management Log (NTML), but the extent to which the deviations occur is unmeasured. Lack of details regarding deviations limits evaluation of implemented responses and alternative actions. New algorithms comparing clear weather vs. SWAP traffic flows enables the locations and durations of incursions to be identified. Exact figures detailing incursions allows for thorough review as well as recognition of areas of frequent incursions and the potential for developing a targeted response for like situations. Full flight tracks of arriving and departing flights provide significant insight into the status of the NAS. During SWAP when the airspace capacity is decreased and airport operation rates are limited, airborne aircraft by protocol receive priority. Arrival numbers can completely dominate operations at these times both in the air and on the ground, draining the resources available for departures in particular flows or for an entire region. To convey cases where departure infrequency results from these conditions, arrival and departure counts grouped according to direction of travel are calculated on an hourly basis. Results from the automated analysis are made available on the RAPT Evaluation and Post Event Analysis Tool (REPEAT) website by 7AM ET for the FAA Northeast tactical review teleconferences, and are being tracked over the convective season for further analysis of operational performance. This paper will present the techniques used in the automated system and initial results from the analysis of operational data.
READ LESS

Summary

When operationally significant weather affects the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. Following a SWAP, the day's events are reviewed and the TFM initiatives used...

READ MORE

Advances in the Consolidated Storm Prediction for Aviation (CoSPA)

Published in:
14th Conf. on Aviation, Range and Aviation Meteorology, American Meteorological Society, 18-21 January 2010.

Summary

Convective storms are responsible for causing a predominant number of delays in the summer when air traffic peaks. Several studies have shown that there is a critical need for timely, reliable, and high-quality forecasts of precipitation and echo tops with forecast time horizons of up to 12 hours in order to predict airspace capacity (Robinson et al. 2008; Evans et al. 2006; FAA 2007). While a variety of convective weather forecast systems are available to strategic planners of the National Airspace System (NAS), these products don't meet Air Traffic Management (ATM) needs fully. In addition, a multitude of forecast products increases the potential of having conflicting information available in the planning process, which can cause situational awareness problems between the operational facilities, ultimately leading to more potential delays and perhaps safety problems.
READ LESS

Summary

Convective storms are responsible for causing a predominant number of delays in the summer when air traffic peaks. Several studies have shown that there is a critical need for timely, reliable, and high-quality forecasts of precipitation and echo tops with forecast time horizons of up to 12 hours in order...

READ MORE

Evaluation of enroute Convective Weather Avoidance Models based on planned and observed flight

Published in:
14th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 16-21 January 2010.

Summary

The effective management of convective weather in congested air space requires decision support tools that can translate weather information available to air traffic managers into anticipated impact on air traffic operations. The Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab under sponsorship of NASA to develop a correlation between pilot behavior and observable weather parameters. To date, the observable weather parameters have been the Corridor Integrated Weather System (CIWS) high resolution Vertically Integrated Liquid (VIL) precipitation map and the CIWS Echo Top product. The CWAM was dependent upon a crude model to define pilot deviations based upon finding weather encounters and then comparing the distance between the planned and actual flight trajectories. Due to a large number of false deviations from this crude model, a significant amount of hand editing was required to use the database. This paper will focus on two areas of work to improve the performance of the enroute convective weather avoidance models. First, an improved automated algorithm to detect weather-related deviations that significantly reduces the percentage of false deviation detections will be presented. This new model includes additional information on each deviation, including the location the decision was made to deviate. The additional information extracted from this algorithm can be used to evaluate the conditions at the decision time which may impact the severity of weather pilots are willing to penetrate. The new deviation detection algorithm has also reduced the amount of hand editing required by removing short cuts taken to reduce the flight time, deviations that occur well past the decision time, and non-weather related reroutes. The second focus of this paper will be the comparison of three different convective weather avoidance models that have been proposed, based upon the analysis of an expanded database of flight deviations. Six weather impact days from 2007 and 2008 have been added to the existing case set from 2006, tripling the number of flight trajectories that can be used in validating the models. In addition to validating the existing CWAM, we will look at additional parameters that may improve the performance of the CWAM.
READ LESS

Summary

The effective management of convective weather in congested air space requires decision support tools that can translate weather information available to air traffic managers into anticipated impact on air traffic operations. The Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab under sponsorship of NASA to develop...

READ MORE

Traffic Management Advisor (TMA) -- weather integration

Published in:
14th Conf. on Aviaton, Range, and Aerospace Meteorology, ARAM, 16-21 January 2010.

Summary

Time-based flow metering (TBFM) of traffic to capacity-constrained areas such as airport runways and arrival fixes is considered a key element of the Next Generation (NextGEN) Air Transportation System operational concept for managing high density air traffic. The principal operational TBFM system today is the Traffic Management Advisor (TMA). TMA is used to optimize the flow of aircraft through various control points (e.g., arrival fixes, final approach fixes, and runway thresholds) so as to maximize airspace capacity without compromising safety. TMA makes continuous predictions of aircraft Estimated Time of Arrivals (ETAs) at various metering points along the flight's trajectory. Scheduling algorithms use the ETAs to compute Scheduled Times of Arrival (STAs) for each aircraft to specific scheduling points. The desired change in aircraft arrival time to the meter fix is provided to en route controllers who then accomplish speed and/or trajectory changes such that the plane passes over the arrival fix at the desired time. The required arrival fix time adjustment is continually updated as the plane proceeds to the arrival fix to provide closed loop control. During non-convective weather, TMA usage has resulted in increased capacity, reduced aircraft fuel burn, and decreased delay. If significant convective weather is present, the TMA software currently still assumes that an aircraft will fly the normal fair weather trajectory to a metering fix. However, if an aircraft deviates around a storm, the flying time to a metering point will generally be different from the fair weather flight time. Therefore, the TMA ETAs will be in error. Currently, the TMA usage is often halted during convective weather events because the arrival time adjustments provided to the controllers may be unmanageable or in error. A study is underway to determine the potential benefits derived from various approaches to integrating weather information from the Corridor Integrated Weather System (CIWS) with TMA. Our focus is on near term weather-TMA integration capabilities that would provide enhanced decision support for the operational community that is successfully utilizing TMA in non-severe weather and/or seeking to increase its operational utility in severe weather. As part of this study, and in conjunction with case study analyses of TMA actions and air traffic operations during convective weather, Subject Matter Experts (SME) from the National TMA Workgroup and select FAA facilities were interviewed to determine TMA fair-weather practices and to identify current TMA capabilities and limitations during weather impact events. The SMEs were also asked to prioritize TMA weather integration needs and to discuss specific weather integration options for the TMA displays. Real-time observations of TMA operations during convective weather were also conducted at Atlanta (ZTL), Boston (ZBW), and Chicago (ZAU) Air Route Traffic Control Centers (ARTCC) to examine (a) the common TMA control actions executed to meter flows during adverse weather, (b) when and why the TBFM becomes unusable during convective weather, and (c) which approaches to providing integrated weather-TMA information would most effectively extend the current TMA capabilities and increase ATM efficiency. The paper will describe initial results of the study including specific options for TMA-CIWS integration and the anticipated operational benefits for these options.
READ LESS

Summary

Time-based flow metering (TBFM) of traffic to capacity-constrained areas such as airport runways and arrival fixes is considered a key element of the Next Generation (NextGEN) Air Transportation System operational concept for managing high density air traffic. The principal operational TBFM system today is the Traffic Management Advisor (TMA). TMA...

READ MORE

Metastable superconducting qubit

Published in:
Phys. Rev. Lett., Vol. 104, No.2, 11 January 2010, 027002.

Summary

We propose a superconducting qubit design, based on a tunable rf SQUID and nanowire kinetic inductors, which has a dramatically reduced transverse electromagnetic coupling to its environment, so that its excited state should be metastable. If electromagnetic interactions are in fact responsible for the current excited-state decay rates of superconducting qubits, this design should result in a qubit lifetime orders of magnitude longer than currently possible. Furthermore, since accurate manipulation and readout of superconducting qubits is currently limited by spontaneous decay, much higher fidelities may be realizable with this design.
READ LESS

Summary

We propose a superconducting qubit design, based on a tunable rf SQUID and nanowire kinetic inductors, which has a dramatically reduced transverse electromagnetic coupling to its environment, so that its excited state should be metastable. If electromagnetic interactions are in fact responsible for the current excited-state decay rates of superconducting...

READ MORE

30 to 50 ns liquid-crystal optical switches

Published in:
Optics Express, Vol. 18, No. 18, 30 August 2010, pp. 1886-18893.

Summary

The optical switching time of twisted-nematic liquid-crystal cells using the liquid crystals, 5CB (C,H,,-Ph-Ph-CN), 50CB(C,Hw O-Ph-Ph-CN) and PCH5 (C,H,,-Cy-Ph-CN) have been characterized as a function of temperature, prebias voltage and switching voltage, V. The transition time from 90 % to 10 % transmission scales as V-1.9 and is limited to 30 to 50 ns by the liquid-crystal breakdown electric field, - 100 V I'm-I The time fi-om the initial switching voltage step to 90 % transmission, delay time, decreases with increasing prebias and switching voltage. For 5CB and 50CS the delay time approaches a constant value at higher electric fields, >10 V ~1Il,-1. Both the transition and delay times decrease with increasing temperature. The minimum transition time at temperatures a few degrees below the nematicisotropic temperature are 32, 32, and 44 ns and delay times are 44, 25 and 8 ns for 5CB, 50CB, and PCH5 respectively.
READ LESS

Summary

The optical switching time of twisted-nematic liquid-crystal cells using the liquid crystals, 5CB (C,H,,-Ph-Ph-CN), 50CB(C,Hw O-Ph-Ph-CN) and PCH5 (C,H,,-Cy-Ph-CN) have been characterized as a function of temperature, prebias voltage and switching voltage, V. The transition time from 90 % to 10 % transmission scales as V-1.9 and is limited to...

READ MORE

Operation and optimization of silicon-diode-based optical modulators

Published in:
IEEE J. Sel. Top. in Quantum Electron., Vol. 16, No. 1, January/February 2010, pp. 165-172.

Summary

An optical modulator in silicon based on a diode structure has been operated in both forward and reverse bias. This modulator achieves near state-of-the-art performance in both modes, thereby making this device idea for comparing the two modes of operation. In reverse bias, the device has a V[pi]L of 4.9 V-cm and a bandwidth of 26GHz. In forward bias, the device is very sensitive, a V[pi]L a slow as 0.0025 V-cm has been achieved, but the bandwidth is only 100 MHz. A ndw geometyr for a reverse-bias device is proposed, and it is predicted to achieve a V[pi]L of 0.5V.cm.
READ LESS

Summary

An optical modulator in silicon based on a diode structure has been operated in both forward and reverse bias. This modulator achieves near state-of-the-art performance in both modes, thereby making this device idea for comparing the two modes of operation. In reverse bias, the device has a V[pi]L of 4.9...

READ MORE